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Localization-delocalization transition of a reaction-diffusion front near a semipermeable wall
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The A+B—C reaction-diffusion process is studied in a system where the reagents are separated by a
semipermeable wall. We use reaction-diffusion equations to describe the process, and to derive a scaling
description for the long-time behavior of the reaction front. Furthermore, we show that a critical localization-
delocalization transition takes place as a control parameter which depends on the initial densities and on the
diffusion constants is varied. The transition is between a reaction front of finite width that is localized at the
wall and a front which is detached and moves away from the wall. At the critical point, the reaction front
remains at the wall but its width diverges with tintas t*’® in the mean-field approximatipnBelow two
dimensions, the fluctuations play an important role and the critical exponents have no longer their mean-field
values.[S1063-651X97)12311-X]

PACS numbg(s): 82.20.Wt, 82.20.Db, 82.20.Mj, 66.30.Ny

I. INTRODUCTION Thus we believe it is importarihence the aim of this paper

. e to consider the formation of reaction fronts in systems with
Reactlo_n fronts formed_ n d|f_fu5|on-_||m|te@\+ B_HC' initially separated species when the wall separating the two

type reactions have been investigated intensively in rece”@pecies is not eliminated &0, but is replaced by a semi-

years[1-19. The motivation came partly from the realiza- permeable wall, which allows only one of the reagets {0
tion that moving reaction fronts play an important role in ajiffse across.

great variety of physical and chemical phenomena which dis- Using a mean-field description of the above process, we

play pattern formatiofi20—23. Another reason for the inter- find that the control parameter in this system is given by
est is the simplicity of the problem, which allows the appli-

cation of different theoretical approaches. Indeed, front )
properties have been studied in detail by using mean-field r=1— -2 b, (1)
and scaling theorie$§6], dynamical renormalization group a0\/551

calculations[14], and numerical simulation§24], and in
some cases exact analytical predictions have also been madberea, andb, are the initial particles densities, whi2,
[13]. andD,, are the diffusion coefficients. We show that, depend-
In most of the cases studied previously, the reaction frontng on the sign ofr, three distinct types of behavior occur.
formed after the spatially separated componehtand B~ Whenr >0, theA particles invade th& phase. The reaction
came into contact. For example, in a typical experimenfront moves away from the semipermeable wall, with the
aimed at producing Liesegang bari@§], one has a vertical distance from the wall increasing g%, and the wall is irrel-
tube of gel soaked with componeBt and, at timet=0, a  evant in the long-time regime. Thus one recovers the predic-
liquid containing the reagem is poured over the gelin  tions (e.g., the width of the reaction zone scalesaast/%)
order to eliminate convection effects, the liquid is sometimegnade with no semipermeable wall presghk In the oppo-
replaced with another gel containing). The theoretical site caser <0, the wall prevents thB particles from invad-
equivalent of this situation is that the reagents are separatddg theA region and, accordingly, the reaction front becomes
by a wall which is removed &t=0, and then the reaction- localized (with finite width) at the semipermeable wall. It
diffusion process begins. turns out that the dividing point between the-0 andr <0
One can imagine, however, that there are situations wheeases is a critical point in the sense that the width of the
the wall between the reagents is present at all times, and thigeaction zone diverges at=0. We have thus found a critical
wall is semipermeable, allowing only one of the reagents tdocalization-delocalization transition from a reaction front lo-
pass through. It may happen, for example, in the aboveealized at the wall to a front detached and moving away from
discussed setup, thBtis not soluble in the liquid containing the wall. It should be noted that a localization-delocalization
A, which is effectively equivalent to the presence of a semidransition of the reaction zone in a relatkd B— C reaction
permeable wall. More importantly, chemical reactions in bio-process has already been discussed by Richardson and Evans
logical systems usually take place in strongly inhomoge{26]. They considered finite-size systems with an injection of
neous media with semipermeable walls presgzit—29. hard-coreA and B patrticles at opposing ends of a one-
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dimensional lattice, and assumed bulk driving for each spe- Our aim will be to calculate the production rate Gf
cies in the opposite directions. Changing the injection rate oparticles defined by
the reaction rate, they observed sharp transitions between
states with localized and delocalized reaction zones. The R(x,t)=ka(x,t)b(xt), ®
localization-delocalization transition we discuss takes place . . : . . . .
in a purely diffusiveA+ B—C system and, as we shall see and mve_stlgate the time evolution of its spatial structure with
below, the presence of the membrane plays a crucial role iﬁmpha&s on the center
the existence of the phenomenon. Nevertheless, there is © o
some similarity between transitions in these systems, in that xf(t)=f xR(x,t)dx/ f R(x,t)dx,
they can be related to boundary effects. This is not so sur- * ‘°°
prising, however, since boundary conditions are at the hea‘qnd the width of the reaction zone
of most of the nonequilibrium transitions. ’

Our results described above will be derived and discussed o o
first by defining the modeldynamical equations and the W(t)=“ (X—Xf)zR(X,t)dX/ J R(x,t)dx
boundary conditionsin Sec. Il. Then the different regimes o o @
are analyzedSec. Ill) both analytically and numerically at
the mean-field level. The role of the fluctuations is discusse@oth x; andw are easily measurable quantities in experi-
in Sec. IV, and concluding remarks are given in Sec. V. ments and simulations.

(6)

1/2

1. MODEL lll. SCALING PROPERTIES OF THE FRONT

The basic notions about reaction zones have been intro- For a system without the membrane, it is kno{@&17]
duced for theA+B— C procesg1] and, in order to keep the that the reaction front will move to the righA(invadesB)
discussion transparent, we shall also consider this case. Moo to the left 8 invadesA) depending on the relative mag-
complicated reaction schemegA+ vgB— C can be treated nitude of quasistationary diffusive currentd D a,/
along the same line, with the same general picture arising. /Dt and JB~Dyb,/\/Dyt), i.e., depending on the sign of

We shall assume that the transport kinetics of the reagentde control parametar
is dominated by diffusion and that the reaction kinetics is of

second order. Thus, at a mean-field level, the mathematical JB boVDy
description of the process is given in terms of reaction- r=1—J—A=1— agyD.’ (8
0 a

diffusion equations
For r=r.=0, the front is stationary in the sense that, al-

— 24 __
da=DaV-a—kab, 2 thoughR(x,t) remains time dependent for large times, the
2b=D.V2b—kab 3) center of the reaction zone does not move ap— )
t b ’ approaches a finite constant.
wherea andb are the densities of the reagertsand B, One expects that the direction of invasion plays an impor-

respectivelyD, andD,, are the corresponding diffusion con- tant 'role in the presence of the membrane as well and, ac-

stants, and the reaction-rate parametds. iNote that there is  cordingly, we shall analyze the>0, r<0, andr=0 cases

a conservation law in this system. Since theand B par- separately.

ticles react in pairs, the difference in their numbers is con-

served. In terms of the densities, this means that the spatiaP- r>0: Invasion of the free (A) reagents—delocalized front

integral ofa—b is constant unless there are particle sources Forr>0, the diffusive current oA particles overwhelms

at the bound:_;\ries. ) the corresponding current & particles, and thus the reac-
The semipermeable membrane is located at thgon front moves to the right. After a while, th particles

(x=0y,2) plane. Initially, allB particles are on the right- disappear from the neighborhood of the membrane, and thus

hand side of this membran&% 0), and, since the membrane the membrane does not play a role anymore. Consequently,

is impenetrable for them, they remain on that side for allihe reaction front leaves the membraifég. 1) and all the

times. In terms of the particle density this means that the results about the long-time scaling form of the reaction front

solution of Egs.(2) and(3) must satisfy the conditions obtained previously applyl], namely,
db(x,t) X—X
b(x<0t)=0, =0. (4) R(x,t)~t PF| —], 9
X | ot t*

The motion of theA particles is not influenced by the where the position of the center of the frort, scales with
membrane and, initially, they are on the left side of it. Fur-time asx;~ 't, the width of the reaction front is proportional
thermore, the initial densities are assumed to be constantp t* with o= %, the scaling exponent of the production rate
i.e., a(x,0)=ay and b(x,0)=0 for x<0 while a(x,0)=0 of C atx=x; is =3, and the scaling functioR(z) is a fast
andb(x,0)=Dbg for x>0. With this choice of initial state, the decreasing function faz— . We can call this front delo-
solution of Egs.(2) and (3) depends only on th& spatial calized since both the center and the width of the front di-
coordinate, and the system effectively becomes one dimerverge in the long-time limit. In closing this subsection, we
sional. note that the above results are modified by fluctuations in
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lem on the diffusive length scabe~ \t, and then use this

solution as the large-argument asymptotics of the solution

1=10° ] aroundx=0.

Viewing the process on the diffusive length scale, the
——- ab (r=0) reaction zone is reduced to a poixt=0), and the diffusion
R of A and B takes place separately in the<O and x>0

(ocalized front regions. The appropriate boundary conditions are as follows:

0.10 [;

10° kab

0.05 a(x——om,t)=ay, a(0t)=0, (10
critical front

/ / delocalized front
/ RN da ab
| / . b(x—»,t)=b,, —D . (1Y

J— =D,—
/ \ a b
7 N dx x=0" dx x=0%

0.00
0

50 100 150 200 250 The first boundary conditions in E¢LO) and(11) are obvi-

ous, while the second boundary condition in Ebjl) is just
FIG. 1. Production rate of near the semipermeable membrane the expression of the equality of the currents entering the
(localized atx=0) for three different values of the control param- reaction zone. The second condition in EL0) is more com-
eterr. The width of the localized front is stationary, while the width plicated. It follows from the assumption that the penetration
of the critical front increases with time &¥°. The distance between length ¢ is finite combined with the fact that the diffusion
the delocalized reaction front and the membrane increase¥?as current approaches zero at large timed,Jy
while its width diverges ag'®. Time is measured in units of NDa((ya/aX”X:O_}l/\/fl i.e., the derivative da/dx)|y—o
7=0.1/(kag), wherek is the reaction rate ana, is the initial den- diminishes fort—=]. The finiteness of, in turn, follows
sity of A. The unit of length is chosen to e VD,7, whereD, s from the finiteness ab(0t) =b*, and so, finding* finite at
the diffusion coefficient of. the end of our calculation provides a self-consistency check
of the underlying picture.

low dimensions §<2), as discussed in several works on  The solution of the diffusion equations with the above
A+B—C reactions without the presence of a membrangdoundary conditions is given by
[6,13].

a(x,t)=—agErf(x/y4D,t), (12
B. r<0: Invasion of the blocked(B) reagents—localized front b(x,t)=b* + (bg—b* ) Erf(x/ m)’ (13)

Forr <0, theB particles would be the invading particles,
but they cannot penetrate past the membrane. Thus one eghere Erfk) is the error function30], andb* =b(0y) is
pects that there will be a finite density Bfparticles ax=0  found from the second condition in E¢L1):
and, consequently, thaa particles can penetrate into the
x>0 region only up to a finite distancg In order to make D.\ 12
this picture(Fig. 2) quantitative, we shall first solve the prob- b*=by—ag —a> =—ap

As we can seeb* is indeed finite for finiter <0 (b*>0

because it has the meaning of particle density

The above results are valid on length scalet? In
order to investigate the details of the reaction zone, we must
consider thex~t° region (Fig. 3), where we should find a
solution with large-distance asymptotics which matches to
the solution found above.

Since we are mainly interested in finding the extent of the
region where the reaction product appears, we should find
the region of penetration oA particles into thex>0 half-
space. Fok< \t, one can approximate(x,t)~b*, and then
the equation foma becomes linear:

D 1/2
D:) r (14)

densities
=3
w0

o
'S

@
W

b* = 1-1/v2

@
[N}

o

da=D,V?a—kb*a. (15)

0.0

. . .
-5 2 3 4 5

0

e This equation is supplemented with the following boundary
FIG. 2. Density profile of the reagents forc0 as seen on a conditions

diffusive scale x~t?). For the given values of diffusion coeffi-

cients ©,,Dy) and initial densitiesdy,by), the large time limit of

da a
b atx=0 is given byb* =1—1/\2. The units are those defined in a(x—»,t)=0, — =-— (16)

Fig. 1. Xl _og  mDgt
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080 b*=1-1#2 4
t/E2 = 25x10

0.10 |

densities

+1.9
scaling function
0.05 [

a(x) 1]

0 . . . !
-40 -30 -20 -10 0 10 20 30 40

FIG. 3. Magnified view of the reaction zone shown in Fig. 2. x/E
Here thex coordinate is not scaled iy The penetration length of
particlesA into the B region is shown by. Note that there is a
break in the vertical scale. The units are those defined in Fig. 1.

FIG. 4. Scaling of the density &'’s in the reaction zone shown
in Fig. 2. The parameters are the same as in Fig. 2, exceptfiod
bo, which are varied in order to keepé? constant £ is given by

The second condition comes from the fact that the diffusiorEd: (191 The numerical solution of the full set of reaction-
current entering the reaction zonexat0 must be equal to  9'usion equationgEgs. (2) and (3)] is compared with the quasi-

. . . stationary scaling solutiof®, (solid line). Since one hab~b* in
that calculated from the macroscopic \/E) considerations. the reaction zone, the scaling function of the reaction rate

Due tq the slowness of diffusiqra,(x,t) changes S|0W|y_ R=kab=~kab* is proportional to that of. The units are those
at Iarge times, and one can consider quasistatic approxmgj-eﬁned in Fig. 1.

tion. Looking for a solution of the form

L with the scaling obtained from the numerical solution of the
= full set of equationg2) and(3).
A= \ﬁq)(x) (17) The phase considered above may be called the phase of

localized reaction zone. One can observe from E®),

one can see that the left-hand side of Bid) is of the order however, tha€ diverges as we approach the=0 point and

t~32 while the right-hand side is proportional to'?, and  thus the reaction zone becomes delocalized ar.=0.

so the time derivative can be neglected. The resulting equaFhusr plays the role of the distance from a critical point and

tion for ® can be easily solved, and the boundary conditionghe exponent we foundé~r~"~r Y2 is obviously the

can be satisfied yielding a solution in a scaling form, mean-field exponent= 3 in accord with the neglect of fluc-
tuations in the above description.

a(x,t) e Xt
a—0=\I’(X/§,Dat/§2)=\/7TD:zat/§, (18) C. r=0: Localization-delocalization transition—critical front
It follows from Sec. Il B that the =0 case can be con-
where the penetratiofor correlation length is given by sidered as a critical point which separates the localized and
12 delocalized phases. Thus we expect that a scaling description
[ Pa) 1g s valid again ar=r.=0 but, in expressions like Eq18),
&= Kb* LiE (19 the correlation length must be replaced by a time-dependent
correlation length which scales as a power of tigg) ~t“.
Sinceb(x,t)~b* in the reaction zone, we can obtdR(fx,t) In order to see that this picture is valid, we follow the steps
from Eq. (18): of Sec. 11l B: the problem is first solved on the diffusion scale
[the solution is actually given by Eg$12) and (13) with
a,D, e ¥¢ b*=0] and then matching solution in the~0 region is

R(x,t)=kab~kab* ~

, x>0, (200  found(Figs. 5 and &
V7Dt ¢ In thex~0 region we seek scaling solutions suggested by

Eqg. (18
~0, x<O. (2 E9(8
D (x/t* D (x/t*
Thus the reaction rate goes down with time agt Livhile a(x,t)~ % b(x,t)~ % (23
the center and the width of the reaction zone remain finite in tHe tHe

this scaling limit, . : .
¢ Several comments are in order to clarify the above scaling

Xp~W~ &. (22)  assumptions. First, the scalingxoby the same® in &, and
®,, is the assumption that there is only one length scale gov-
One can see from Fig. 4 that the scaling fo(h8) agrees erning the reaction zone. Second, the exporeshould be
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where the scaling variable is=x/t'/®,
The boundary conditions to the above equations follow
from a(x—,t)=0 anddb/dx(0",t)=0, and from match-

o8 ing the solutions to the ones found on the diffusive scale

06 o (Z_>w):0 dq)a - _ QAo (26)
% : ©odz z=0 \/77Da,

o do,| ddy by -
dz|,_o 7 dzf, . @D,

02|

Equations(24) and (25) with boundary condition£26) and
(27), however, pose a difficulty related to the fact that the
004 e z g ° 1 z s 2 combinationv=D,®,—D,®, satisfies a linear equation
v”"=0, and the solutionn=Pz+Q contains an integration
FIG. 5. Density profile of the reagents at the critical point constantQ which is not determined by the boundary condi-
(r=0) as seen on a diffusive scale~¢t?). Notation is explained tions. Consequently, the scaling functions do not appear to
in the caption to Fig. 2. The units are those defined in Fig. 1. be unique.
1 : _ ) This problem of uniqueness can be dealt with by returning
5 or less since the case without the membrane gives an UPPES the diffusive scalec~ Jt, and reexamining the solutions

!imit for th_e spread of the reaction zone, and there the width, 4 there e shall demonstrate the idea on the example of
is proportional tot'®. Finally, one should note that the ex- a system wher®,—D,, (andag=by, since we are at criti
a l

pqnent%—a c.)f the prefactors of the scaling funciions is, in cality). In this caseu=a—b satisfies the diffusion equation
principle, an independent exponent. In this case, however, o both x>0 andx<0. the boundary conditions are given
is fixed by the boundary conditio4/dx)4_o~ 1/yt and by y u(—ce,t)=—u(e t)'=a0 and a,u(0,t)=4,u(0",t)
4 . [} [} X 3 X [

the requirement that the Iarge—argum.ent asymptotics Oan, furthermore, the initial conditior u(x<0,0)=ay;
b(x,t) should match the solution obtained on tke-\t u(x>0,0)= —a,] is an odd function of. It follows then
scale. , , that the solution is an odd functiomy(x,t)=—u(—x,t).

Substituting the scaling form@3) into Egs.(2) and(3), Next we note thati=a for x<0 while u=a—b for x>0,

one finds that, for large times and fax 3, the time deriva- and, approaching=0 from both sides, the oddness of
tives on the left-hand sides can be neglected. Furthermor@iek'js the following relationship: ’

the right-hand sides yield meaningful equations only ifs

set toa= 3. The resulting equations then take the forms —a(x=0",t)=a(x=0",t)—b(x=0%,t). (28)
d’d, k _ _ . .
=—0, Dy, (24)  Since there is no accumulation éf particles atx=0, we
dZ Da have da(x=0",t)=da(x=0",t) and, consequentlya is
, continuous function across the membrare(x=0",t)
d“®,  k ®.® 25) =a(x=07,t). Then Eq.(28) yieldsb(0;t)=2a(0,), which,
d2 D, &% in turn, provides an additional boundary condition for the

scaling functions:
0.10

Dp(0)=2P4(0). (29

0.09 |
o The same extra boundary condition can also be found for
D,# Dy, but the argument is rather involved, so we shall not
reproduce it here. From the perspective of critical phenom-
ena, it is quite natural that the scaling function does not
depend on such details as the diffusion coefficients.
Having the extra boundary conditid®9), ®, and®, can
now be found numerically. Some properties of the scaling
functions can, however, be seen by just inspecting the equa-
tions. For example, substituting the largeasymptotics
®y(z) ~z into Eq.(24), one can see thab ,(z—) is given
by the Airy function[30].
50 50 In Fig. 7, we show that the scaling regime does exist, and
that the numerical results do agree with the solution of the
FIG. 6. Magnified view of the reaction zone shown in Fig. 5. full equations(2) and(3). It then follows from Eqs(24) and
Note that here is not scaled by*2 The units are those defined in (25) that the production rate can also be written in a scaling
Fig. 1. form
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1.00 I

—— scaling function
o t=10"

0.75 |

In(G)

t13 g

0.50 |

025 3 13
In(t)

0.00
0

) FIG. 8. Width of the cumulative production ratéx,t) for a

z cellular automata dynamics, in one- and two-dimensional systems.
. ) ) The width exponents, given by the slope of the log-log plot, are
FIG. 7. Scaling functiorn, for a [Eq. (23)]. The numerical  ;;mnatile with the expected values=  and . Time is measured

solu_tion of the full _set of reaC“_O”'O!iff“SiO” eqpatio[@?'(z) and _in units of computation steps, while the width is given in units of
(3)] is compared with the quasistationary scaling solution. The unit§;tice spacing.

are those defined in Fig. 1.
merically the cumulative production rate, defined as

ROX,) 1¢<X)q>(x) 1\1f(x) (30 t
X’ ~ A a A e = 7 A )
1282\ gy P\ quis] 23| e c(x,t)zf dr R(x,7) (32
0

and we can observe that the reaction front remains attached . . . . .
to the wall, but that it expands with time into the=0 re- 1N one dimension. In two dimensions, the production rate

gion. Both the center and width of the zone diverge with&!SO depends on the transverse coordiyatand we define

time as c(x,t) as an average over thedirection:
116 t
Xp~ W~ (3D c(x,t)=f0f dy dr R(x,y, 7). (33

and both exponents are the same in contrast to the delocal-

ized phase wherg;~t'2 andw~t*5, Assuming the scaling form given by E() for the produc-
tion rateR, it follows that the above cumulative production

IV. IMPORTANCE OF FLUCTUATIONS ratesc(x,t) have the same width and mean position expo-

nenta asR.

The above discussion is based on a mean-field-like treat- | Fig. 8, the widthso of the cumulative production rates
ment, and one can ask what is the role played by the flucare shown as a function of tinte The quantitys is com-
tuations. In the case without a semipermeable wall, it is hagyted as the widtii7) but with c(x,t) replacingR(x,t). The
been showr{6,13] that the upper critical dimension above ygjyes of the exponenta are 0.2950.010 and
which the mean-field theory is correctdg=2. In dimension g 165+ 0.010, respectively, in one and two dimensions. The
d=1, the critical exponents take their non-mean-field valuesya|yes agree with the ones found in the case without a semi-
For example, the width exponent changes from the mearsermeable wall5,6]. Whereas the two-dimensional expo-
field valuea=35 to 3. As we saw before, the above situation nent fits well with its theoretical valuel, the one-
corresponds to the case of a delocalized fronD. For the  gimensional situation is not as satisfactory. Nevertheless, as
critical caser =0, we performed cellular automata numeri- argued in Ref[13], it is very difficult to obtain the theoret-
cal simulations. Details on this type of simulations can bejca| valuea= 1 from a simulation of the time dependence of
found in Ref.[5]. One considers the synchronous randomine width.
walk of two types of particlegrepresenting specigsandB) Finally, a log-log plot of the mean position of the front
on a regular lattice. At time=0, the A and B particles  yersus time yields exponents whose values are in agreement
occupy the left and right halves of the lattice, respectively.with the above results, namely,=0.252+0.010 in one di-
Upon encounter, aA and aB particle annihilate. This reac- mension andv=0.163+0.010 in two dimensions. Thus we

tion process, as well as the diffusion mechanism, were deconclude that the fluctuations play a similar role for both
scribed in more detail in Ref$5,6]. Here we consider one- cgseq =0 andr>0.

and two-dimensional systems, with a semipermeable mem-

brane chated at thexge O,)_/) plane. When & partlcle hits V. FINAL REMARKS

the semipermeable wall it bounces back, while fkear-

ticles are not affected. For the one-dimensional case we con- We can now summarize the properties of the localization-

sidered a chain of 2048 sites, while, for the two-dimensionatelocalization transition discussed above as follows. For

case, the size of the system was xB2. r <0, the reaction zone is localized at the membrane, and the
From a statistical point of view, it is better to study nu- width is determined by the correlation lengt, describing
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the penetration of thé particles into the constant-densiy  without a knowledge of the actual parameters.
region. Atr =0 the penetration length diverges, but there is The above considerations, of course, do not constitute an
still a single(diverging with time length which characterizes attempt toward an explanation of a real biological phenom-
the reaction zone. It should be noted that a diverging diffuena such as the precipitation of the siliceous stuctures of
sion length/,~ \t is always present, but it is irrelevant for single-cell radiolaria. This is so even if one imagines that, at
r<0. Forr >0, however, the diffusion length starts to play a the early stages of the evolution, the regular skeletons are
role: the reaction zone becomes delocalized and two distingtither produced as an instability in a physicochemical,
length scales appear. One of them is the distance of the cefeaction-diffusion process, or arise by surface-tension-
ter of the zone from the membrang~ Jt, which is just the ~ assisted precipitation where the membranes are present but
diffusion length while the other is the width of the reaction Play a passive rolétheir intersections define the precipita-
zone,w~t% (in the mean-field approximation tion regiong [31]. At the present stage of evolution, the skel-
The questions of how muad is produced near the mem- €tons are covered with a membranous cytoplasmic sheet
brane, and whether their densitygrows to exceed some Which appears to play an important r¢keg., transport along
aggregation thresholeh, may be of importance in biological the membranein the skeletal depositiong28]. Thus any
phenomende.g., in the building of rather intricate but regu- attempt at physicochemicaéxplanation should include the
lar mineral skeletons of single-cell organisms such as radiPresence of such aactive membrane near the precipitation
olaria[28] or diatoms[29]). The answers to the above ques- ZO0N€. . .
tions depend on the localization properties of the reaction In this paper, we derived results for the properties of re-
zone. action zones near a semipermeable membrane whiels-is
For r<0, the reaction zone has a finite width and thus tive only in the sense that it is blocking the transport of one
provided theC's do not diffuse away, their density will in- Of the reagents. We hope, however, that our results will help
crease with time as(t)~ t. This result follows from the [N discussing more complicated reactions naeiive mem-
fact that the currend”(t) of A particles toward the reaction branes in the same way as the understanding of the properties

zone is proportional to 1t and, consequently, the amount of th_e r(_eaction zongl] in the A+B—C reacti(_)n hEIDEd in
of C's, produced up to timet, is given by Mc elucidating the features of the pattern formation in the much

~ [UIA(P) 7~ L. more complicated Liesegang phenom¢aa].

A somewhat slower increase oft) takes place at=0.
Since the width of the reaction zone divergesvast'/®, one
findsc(t)~Mc/w~tY3. We can see that, for both<0 and
r=0, the density ofC’s near the membrane exceeds any This work was partially supported by the Swiss National
thresholdc, at sufficiently large times. Thus supersaturationScience Foundation in the framework of the Cooperation in
and, associated with it, the precipitation ©@may occur in  Science and Research with CEEC/NIS, by the Hungarian
these regimes. Academy of ScienceGrant No. OTKA T 01945), and by

Finally, for r >0, the reaction zone leaves the membranean EC Network Grant ERB CHRX-CT92-0063. Z.R. would
and only a finite density of’s left behind. The actual value like to thank the members of the Theoretical Physics Depart-
of this density depends sensitively on the initial conditionsment for the hospitality during his stay at the University of
and one cannot make statements about possible precipitatié®eneva.
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