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Localization-delocalization transition of a reaction-diffusion front near a semipermeable wall
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The A1B→C reaction-diffusion process is studied in a system where the reagents are separated by a
semipermeable wall. We use reaction-diffusion equations to describe the process, and to derive a scaling
description for the long-time behavior of the reaction front. Furthermore, we show that a critical localization-
delocalization transition takes place as a control parameter which depends on the initial densities and on the
diffusion constants is varied. The transition is between a reaction front of finite width that is localized at the
wall and a front which is detached and moves away from the wall. At the critical point, the reaction front
remains at the wall but its width diverges with time~as t1/6 in the mean-field approximation!. Below two
dimensions, the fluctuations play an important role and the critical exponents have no longer their mean-field
values.@S1063-651X~97!12311-X#

PACS number~s!: 82.20.Wt, 82.20.Db, 82.20.Mj, 66.30.Ny
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I. INTRODUCTION

Reaction fronts formed in diffusion-limitedA1B→C-
type reactions have been investigated intensively in rec
years@1–19#. The motivation came partly from the realiza
tion that moving reaction fronts play an important role in
great variety of physical and chemical phenomena which
play pattern formation@20–23#. Another reason for the inter
est is the simplicity of the problem, which allows the app
cation of different theoretical approaches. Indeed, fr
properties have been studied in detail by using mean-fi
and scaling theories@6#, dynamical renormalization grou
calculations@14#, and numerical simulations@24#, and in
some cases exact analytical predictions have also been m
@13#.

In most of the cases studied previously, the reaction fr
formed after the spatially separated componentsA and B
came into contact. For example, in a typical experim
aimed at producing Liesegang bands@25#, one has a vertica
tube of gel soaked with componentB, and, at timet50, a
liquid containing the reagentA is poured over the gel~in
order to eliminate convection effects, the liquid is sometim
replaced with another gel containingA). The theoretical
equivalent of this situation is that the reagents are separ
by a wall which is removed att50, and then the reaction
diffusion process begins.

One can imagine, however, that there are situations w
the wall between the reagents is present at all times, and
wall is semipermeable, allowing only one of the reagents
pass through. It may happen, for example, in the abo
discussed setup, thatB is not soluble in the liquid containing
A, which is effectively equivalent to the presence of a se
permeable wall. More importantly, chemical reactions in b
logical systems usually take place in strongly inhomo
neous media with semipermeable walls present@27–29#.
561063-651X/97/56~5!/5343~8!/$10.00
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Thus we believe it is important~hence the aim of this paper!
to consider the formation of reaction fronts in systems w
initially separated species when the wall separating the
species is not eliminated att50, but is replaced by a semi
permeable wall, which allows only one of the reagents (A) to
diffuse across.

Using a mean-field description of the above process,
find that the control parameter in this system is given by

r 512
b0ADb

a0ADa

, ~1!

wherea0 andb0 are the initial particles densities, whileDa
andDb are the diffusion coefficients. We show that, depen
ing on the sign ofr , three distinct types of behavior occu
Whenr .0, theA particles invade theB phase. The reaction
front moves away from the semipermeable wall, with t
distance from the wall increasing asAt, and the wall is irrel-
evant in the long-time regime. Thus one recovers the pre
tions ~e.g., the width of the reaction zone scales asw;t1/6)
made with no semipermeable wall present@1#. In the oppo-
site case,r ,0, the wall prevents theB particles from invad-
ing theA region and, accordingly, the reaction front becom
localized ~with finite width! at the semipermeable wall. I
turns out that the dividing point between ther .0 andr ,0
cases is a critical point in the sense that the width of
reaction zone diverges atr 50. We have thus found a critica
localization-delocalization transition from a reaction front l
calized at the wall to a front detached and moving away fr
the wall. It should be noted that a localization-delocalizati
transition of the reaction zone in a relatedA1B→C reaction
process has already been discussed by Richardson and E
@26#. They considered finite-size systems with an injection
hard-coreA and B particles at opposing ends of a on
5343 © 1997 The American Physical Society
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5344 56CHOPARD, DROZ, MAGNIN, AND RÁCZ
dimensional lattice, and assumed bulk driving for each s
cies in the opposite directions. Changing the injection rate
the reaction rate, they observed sharp transitions betw
states with localized and delocalized reaction zones.
localization-delocalization transition we discuss takes pl
in a purely diffusiveA1B→C system and, as we shall se
below, the presence of the membrane plays a crucial rol
the existence of the phenomenon. Nevertheless, ther
some similarity between transitions in these systems, in
they can be related to boundary effects. This is not so
prising, however, since boundary conditions are at the h
of most of the nonequilibrium transitions.

Our results described above will be derived and discus
first by defining the model~dynamical equations and th
boundary conditions! in Sec. II. Then the different regime
are analyzed~Sec. III! both analytically and numerically a
the mean-field level. The role of the fluctuations is discus
in Sec. IV, and concluding remarks are given in Sec. V.

II. MODEL

The basic notions about reaction zones have been in
duced for theA1B→C process@1# and, in order to keep the
discussion transparent, we shall also consider this case. M
complicated reaction schemesnAA1nBB→C can be treated
along the same line, with the same general picture arisin

We shall assume that the transport kinetics of the reag
is dominated by diffusion and that the reaction kinetics is
second order. Thus, at a mean-field level, the mathema
description of the process is given in terms of reactio
diffusion equations

] ta5Da¹2a2kab, ~2!

] tb5Db¹2b2kab, ~3!

where a and b are the densities of the reagentsA and B,
respectively,Da andDb are the corresponding diffusion con
stants, and the reaction-rate parameter isk. Note that there is
a conservation law in this system. Since theA and B par-
ticles react in pairs, the difference in their numbers is c
served. In terms of the densities, this means that the sp
integral ofa2b is constant unless there are particle sour
at the boundaries.

The semipermeable membrane is located at
(x50,y,z) plane. Initially, all B particles are on the right
hand side of this membrane (x.0), and, since the membran
is impenetrable for them, they remain on that side for
times. In terms of the particle densityb, this means that the
solution of Eqs.~2! and ~3! must satisfy the conditions

b~x,0,t !50,
]b~x,t !

]x U
x501

50. ~4!

The motion of theA particles is not influenced by th
membrane and, initially, they are on the left side of it. Fu
thermore, the initial densities are assumed to be cons
i.e., a(x,0)5a0 and b(x,0)50 for x,0 while a(x,0)50
andb(x,0)5b0 for x.0. With this choice of initial state, the
solution of Eqs.~2! and ~3! depends only on thex spatial
coordinate, and the system effectively becomes one dim
sional.
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Our aim will be to calculate the production rate ofC
particles defined by

R~x,t !5ka~x,t !b~x,t !, ~5!

and investigate the time evolution of its spatial structure w
emphasis on the center

xf~ t !5E
2`

`

xR~x,t !dxY E
2`

`

R~x,t !dx, ~6!

and the width of the reaction zone,

w~ t !5F E
2`

`

~x2xf !
2R~x,t !dxY E

2`

`

R~x,t !dxG1/2

.

~7!

Both xf and w are easily measurable quantities in expe
ments and simulations.

III. SCALING PROPERTIES OF THE FRONT

For a system without the membrane, it is known@3,17#
that the reaction front will move to the right (A invadesB)
or to the left (B invadesA) depending on the relative mag
nitude of quasistationary diffusive currents (JA;Daa0 /
ADat and JB;Dbb0 /ADbt), i.e., depending on the sign o
the control parameterr :

r 512
JB

JA
512

b0ADb

a0ADa

. ~8!

For r 5r c50, the front is stationary in the sense that,
thoughR(x,t) remains time dependent for large times, t
center of the reaction zone does not move andxf(t→`)
approaches a finite constant.

One expects that the direction of invasion plays an imp
tant role in the presence of the membrane as well and,
cordingly, we shall analyze ther .0, r ,0, andr 50 cases
separately.

A. r>0: Invasion of the free „A… reagents—delocalized front

For r .0, the diffusive current ofA particles overwhelms
the corresponding current ofB particles, and thus the reac
tion front moves to the right. After a while, theB particles
disappear from the neighborhood of the membrane, and
the membrane does not play a role anymore. Conseque
the reaction front leaves the membrane~Fig. 1! and all the
results about the long-time scaling form of the reaction fro
obtained previously apply@1#, namely,

R~x,t !;t2bFS x2xf

ta D , ~9!

where the position of the center of the front,xf , scales with
time asxf;At, the width of the reaction front is proportiona
to ta with a5 1

6, the scaling exponent of the production ra
of C at x5xf is b5 2

3, and the scaling functionF(z) is a fast
decreasing function forz→6`. We can call this front delo-
calized since both the center and the width of the front
verge in the long-time limit. In closing this subsection, w
note that the above results are modified by fluctuations
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56 5345LOCALIZATION-DELOCALIZATION TRANSITION OF A . . .
low dimensions (d,2), as discussed in several works o
A1B→C reactions without the presence of a membra
@6,13#.

B. r<0: Invasion of the blocked„B… reagents—localized front

For r ,0, theB particles would be the invading particle
but they cannot penetrate past the membrane. Thus one
pects that there will be a finite density ofB particles atx50
and, consequently, thatA particles can penetrate into th
x.0 region only up to a finite distancej. In order to make
this picture~Fig. 2! quantitative, we shall first solve the prob

FIG. 1. Production rate ofC near the semipermeable membra
~localized atx50) for three different values of the control param
eterr . The width of the localized front is stationary, while the wid
of the critical front increases with time ast1/6. The distance between
the delocalized reaction front and the membrane increases ast1/2,
while its width diverges ast1/6. Time is measured in units o
t50.1/(ka0), wherek is the reaction rate anda0 is the initial den-
sity of A. The unit of length is chosen to bel 5ADat, whereDa is
the diffusion coefficient ofA.

FIG. 2. Density profile of the reagents forr ,0 as seen on a
diffusive scale (x;t1/2). For the given values of diffusion coeffi
cients (Da ,Db) and initial densities (a0 ,b0), the large time limit of
b at x50 is given byb* 5121/A2. The units are those defined i
Fig. 1.
e

ex-

lem on the diffusive length scalex;At, and then use this
solution as the large-argument asymptotics of the solu
aroundx50.

Viewing the process on the diffusive length scale, t
reaction zone is reduced to a point (x50), and the diffusion
of A and B takes place separately in thex,0 and x.0
regions. The appropriate boundary conditions are as follo

a~x→2`,t !5a0 , a~0,t !50, ~10!

b~x→`,t !5b0 , 2Da

]a

]xU
x502

5Db

]b

]xU
x501

. ~11!

The first boundary conditions in Eq.~10! and ~11! are obvi-
ous, while the second boundary condition in Eq.~11! is just
the expression of the equality of the currents entering
reaction zone. The second condition in Eq.~10! is more com-
plicated. It follows from the assumption that the penetrat
length j is finite combined with the fact that the diffusio
current approaches zero at large times,@Jdiff

;Da(]a/]x)ux50→1/At, i.e., the derivative (]a/]x)ux50
diminishes fort→`#. The finiteness ofj, in turn, follows
from the finiteness ofb(0,t)5b* , and so, findingb* finite at
the end of our calculation provides a self-consistency ch
of the underlying picture.

The solution of the diffusion equations with the abo
boundary conditions is given by

a~x,t !52a0Erf~x/A4Dat !, ~12!

b~x,t !5b* 1~b02b* !Erf~x/A4Dbt !, ~13!

where Erf(x) is the error function@30#, and b* 5b(0,t) is
found from the second condition in Eq.~11!:

b* 5b02a0S Da

Db
D 1/2

52a0S Da

Db
D 1/2

r . ~14!

As we can see,b* is indeed finite for finiter ,0 (b* .0
because it has the meaning of particle density!.

The above results are valid on length scalex;t1/2. In
order to investigate the details of the reaction zone, we m
consider thex;t0 region ~Fig. 3!, where we should find a
solution with large-distance asymptotics which matches
the solution found above.

Since we are mainly interested in finding the extent of
region where the reaction product appears, we should
the region of penetration ofA particles into thex.0 half-
space. Forx!At, one can approximateb(x,t)'b* , and then
the equation fora becomes linear:

] ta5Da¹2a2kb* a. ~15!

This equation is supplemented with the following bounda
conditions

a~x→`,t !50,
]a

]xU
x50

52
a0

ApDat
. ~16!
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The second condition comes from the fact that the diffus
current entering the reaction zone atx50 must be equal to
that calculated from the macroscopic (x;At) considerations.

Due to the slowness of diffusion,a(x,t) changes slowly
at large times, and one can consider quasistatic approx
tion. Looking for a solution of the form

a~x,t !'
1

At
F~x! ~17!

one can see that the left-hand side of Eq.~15! is of the order
t23/2, while the right-hand side is proportional tot21/2, and
so the time derivative can be neglected. The resulting eq
tion for F can be easily solved, and the boundary conditio
can be satisfied yielding a solution in a scaling form,

a~x,t !

a0
5C~x/j,Dat/j2!5

e2x/j

ApDat/j2
, ~18!

where the penetration~or correlation! length is given by

j5S Da

kb*
D 1/2

;ur u21/2. ~19!

Sinceb(x,t)'b* in the reaction zone, we can obtainR(x,t)
from Eq. ~18!:

R~x,t !5kab'kab* ;
a0Da

ApDat

e2 x/j

j
, x.0, ~20!

50, x,0. ~21!

Thus the reaction rate goes down with time as 1/At, while
the center and the width of the reaction zone remain finite
this scaling limit,

xf;w;j. ~22!

One can see from Fig. 4 that the scaling form~18! agrees

FIG. 3. Magnified view of the reaction zone shown in Fig.
Here thex coordinate is not scaled byt1/2. The penetration length o
particlesA into the B region is shown byj. Note that there is a
break in the vertical scale. The units are those defined in Fig.
n

a-

a-
s

n

with the scaling obtained from the numerical solution of t
full set of equations~2! and ~3!.

The phase considered above may be called the phas
localized reaction zone. One can observe from Eq.~19!,
however, thatj diverges as we approach ther 50 point and
thus the reaction zone becomes delocalized atr 5r c50.
Thusr plays the role of the distance from a critical point a
the exponent we found,j;r 2n;r 21/2 is obviously the
mean-field exponentn5 1

2 in accord with the neglect of fluc
tuations in the above description.

C. r 50: Localization-delocalization transition—critical front

It follows from Sec. III B that ther 50 case can be con
sidered as a critical point which separates the localized
delocalized phases. Thus we expect that a scaling descrip
is valid again atr 5r c50 but, in expressions like Eq.~18!,
the correlation length must be replaced by a time-depend
correlation length which scales as a power of time,j(t);ta.
In order to see that this picture is valid, we follow the ste
of Sec. III B: the problem is first solved on the diffusion sc
@the solution is actually given by Eqs.~12! and ~13! with
b* 50# and then matching solution in thex'0 region is
found ~Figs. 5 and 6!.

In thex'0 region we seek scaling solutions suggested
Eq. ~18!

a~x,t !'
Fa~x/ta!

t1/22a
, b~x,t !'

Fb~x/ta!

t1/22a
. ~23!

Several comments are in order to clarify the above sca
assumptions. First, the scaling ofx by the sameta in Fa and
Fb is the assumption that there is only one length scale g
erning the reaction zone. Second, the exponenta should be

FIG. 4. Scaling of the density ofA’s in the reaction zone shown
in Fig. 2. The parameters are the same as in Fig. 2, except fort and
b0, which are varied in order to keept/j2 constant@j is given by
Eq. ~19!#. The numerical solution of the full set of reaction
diffusion equations@Eqs. ~2! and ~3!# is compared with the quasi
stationary scaling solutionFa ~solid line!. Since one hasb'b* in
the reaction zone, the scaling function of the reaction r
R5kab5'kab* is proportional to that ofa. The units are those
defined in Fig. 1.
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1
6 or less since the case without the membrane gives an u
limit for the spread of the reaction zone, and there the wi
is proportional tot1/6. Finally, one should note that the ex
ponent1

2 2a of the prefactors of the scaling functions is,
principle, an independent exponent. In this case, howeve
is fixed by the boundary condition (]a/]x)x50;1/At and by
the requirement that the large-argument asymptotics
b(x,t) should match the solution obtained on thex;At
scale.

Substituting the scaling forms~23! into Eqs.~2! and ~3!,
one finds that, for large times and fora, 1

2, the time deriva-
tives on the left-hand sides can be neglected. Furtherm
the right-hand sides yield meaningful equations only ifa is
set toa5 1

6. The resulting equations then take the forms

d2Fa

dz2
5

k

Da
FaFb , ~24!

d2Fb

dz2
5

k

Db
FaFb , ~25!

FIG. 5. Density profile of the reagents at the critical po
(r 50) as seen on a diffusive scale (x;t1/2). Notation is explained
in the caption to Fig. 2. The units are those defined in Fig. 1.

FIG. 6. Magnified view of the reaction zone shown in Fig.
Note that herex is not scaled byt1/2. The units are those defined i
Fig. 1.
er
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where the scaling variable isz5x/t1/6.
The boundary conditions to the above equations foll

from a(x→`,t)50 and]b/]x(01,t)50, and from match-
ing the solutions to the ones found on the diffusive scale

Fa~z→`!50,
dFa

dz U
z50

52
a0

ApDa

, ~26!

dFb

dz U
z501

50,
dFb

dz U
z→`

5
b0

ApDb

. ~27!

Equations~24! and ~25! with boundary conditions~26! and
~27!, however, pose a difficulty related to the fact that t
combination v5DaFa2DbFb satisfies a linear equatio
v950, and the solutionv5Pz1Q contains an integration
constantQ which is not determined by the boundary cond
tions. Consequently, the scaling functions do not appea
be unique.

This problem of uniqueness can be dealt with by return
to the diffusive scalex;At, and reexamining the solution
found there. We shall demonstrate the idea on the examp
a system whereDa5Db ~anda05b0, since we are at criti-
cality!. In this case,u5a2b satisfies the diffusion equatio
for both x.0 andx,0, the boundary conditions are give
by u(2`,t)52u(`,t)5a0 and ]xu(02,t)5]xu(01,t)
and, furthermore, the initial condition@u(x,0,0)5a0;
u(x.0,0)52a0# is an odd function ofx. It follows then
that the solution is an odd function,u(x,t)52u(2x,t).
Next we note thatu5a for x,0 while u5a2b for x.0,
and, approachingx50 from both sides, the oddness ofu
yields the following relationship:

2a~x502,t !5a~x501,t !2b~x501,t !. ~28!

Since there is no accumulation ofA particles atx50, we
have ]a(x502,t)5]a(x501,t) and, consequently,a is
continuous function across the membrane,a(x502,t)
5a(x501,t). Then Eq.~28! yieldsb(0,t)52a(0,t), which,
in turn, provides an additional boundary condition for t
scaling functions:

Fb~0!52Fa~0!. ~29!

The same extra boundary condition can also be found
DaÞDb , but the argument is rather involved, so we shall n
reproduce it here. From the perspective of critical pheno
ena, it is quite natural that the scaling function does
depend on such details as the diffusion coefficients.

Having the extra boundary condition~29!, Fa andFb can
now be found numerically. Some properties of the scal
functions can, however, be seen by just inspecting the eq
tions. For example, substituting the large-z asymptotics
Fb(z);z into Eq.~24!, one can see thatFa(z→`) is given
by the Airy function@30#.

In Fig. 7, we show that the scaling regime does exist, a
that the numerical results do agree with the solution of
full equations~2! and~3!. It then follows from Eqs.~24! and
~25! that the production rate can also be written in a scal
form
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R~x,t !;
1

t2/3
FaS x

t1/6D FbS x

t1/6D 5
1

t2/3
CS x

t1/6D , ~30!

and we can observe that the reaction front remains attac
to the wall, but that it expands with time into thex.0 re-
gion. Both the center and width of the zone diverge w
time as

xf;w;t1/6, ~31!

and both exponents are the same in contrast to the delo
ized phase wherexf;t1/2 andw;t1/6.

IV. IMPORTANCE OF FLUCTUATIONS

The above discussion is based on a mean-field-like tr
ment, and one can ask what is the role played by the fl
tuations. In the case without a semipermeable wall, it is
been shown@6,13# that the upper critical dimension abov
which the mean-field theory is correct isdu52. In dimension
d51, the critical exponents take their non-mean-field valu
For example, the width exponent changes from the me
field valuea5 1

6 to 1
4. As we saw before, the above situatio

corresponds to the case of a delocalized frontr .0. For the
critical case,r 50, we performed cellular automata nume
cal simulations. Details on this type of simulations can
found in Ref. @5#. One considers the synchronous rando
walk of two types of particles~representing speciesA andB)
on a regular lattice. At timet50, the A and B particles
occupy the left and right halves of the lattice, respective
Upon encounter, anA and aB particle annihilate. This reac
tion process, as well as the diffusion mechanism, were
scribed in more detail in Refs.@5,6#. Here we consider one
and two-dimensional systems, with a semipermeable m
brane located at the (x50,y) plane. When aB particle hits
the semipermeable wall it bounces back, while theA par-
ticles are not affected. For the one-dimensional case we
sidered a chain of 2048 sites, while, for the two-dimensio
case, the size of the system was 512364.

From a statistical point of view, it is better to study n

FIG. 7. Scaling functionFa for a @Eq. ~23!#. The numerical
solution of the full set of reaction-diffusion equations@Eqs.~2! and
~3!# is compared with the quasistationary scaling solution. The u
are those defined in Fig. 1.
ed

al-

t-
c-
s
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n-

e
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e-
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merically the cumulative production rate, defined as

c~x,t !5E
0

t

dt R~x,t! ~32!

in one dimension. In two dimensions, the production r
also depends on the transverse coordinatey, and we define
c(x,t) as an average over they direction:

c~x,t !5E
0

tE dy dt R~x,y,t!. ~33!

Assuming the scaling form given by Eq.~9! for the produc-
tion rateR, it follows that the above cumulative productio
ratesc(x,t) have the same width and mean position exp
nenta asR.

In Fig. 8, the widthss of the cumulative production rate
are shown as a function of timet. The quantitys is com-
puted as the width~7! but with c(x,t) replacingR(x,t). The
values of the exponenta are 0.29560.010 and
0.16560.010, respectively, in one and two dimensions. T
values agree with the ones found in the case without a se
permeable wall@5,6#. Whereas the two-dimensional expo
nent fits well with its theoretical value1

6, the one-
dimensional situation is not as satisfactory. Nevertheless
argued in Ref.@13#, it is very difficult to obtain the theoret-
ical valuea5 1

4 from a simulation of the time dependence
the width.

Finally, a log-log plot of the mean position of the fron
versus time yields exponents whose values are in agreem
with the above results, namely,a50.25260.010 in one di-
mension anda50.16360.010 in two dimensions. Thus w
conclude that the fluctuations play a similar role for bo
casesr 50 andr .0.

V. FINAL REMARKS

We can now summarize the properties of the localizati
delocalization transition discussed above as follows.
r ,0, the reaction zone is localized at the membrane, and
width is determined by the correlation length,j, describing

ts

FIG. 8. Width of the cumulative production ratec(x,t) for a
cellular automata dynamics, in one- and two-dimensional syste
The width exponents, given by the slope of the log-log plot,
compatible with the expected valuesa5

1
4 and 1

6. Time is measured
in units of computation steps, while the width is given in units
lattice spacing.
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the penetration of theA particles into the constant-densityB
region. At r 50 the penetration length diverges, but there
still a single~diverging with time! length which characterize
the reaction zone. It should be noted that a diverging dif
sion lengthl D;At is always present, but it is irrelevant fo
r<0. Forr .0, however, the diffusion length starts to play
role: the reaction zone becomes delocalized and two dis
length scales appear. One of them is the distance of the
ter of the zone from the membrane,xf;At, which is just the
diffusion length while the other is the width of the reactio
zone,w;t1/6 ~in the mean-field approximation!.

The questions of how muchC is produced near the mem
brane, and whether their densityc grows to exceed som
aggregation thresholdc0, may be of importance in biologica
phenomena~e.g., in the building of rather intricate but regu
lar mineral skeletons of single-cell organisms such as r
olaria @28# or diatoms@29#!. The answers to the above que
tions depend on the localization properties of the reac
zone.

For r ,0, the reaction zone has a finite width and th
provided theC’s do not diffuse away, their density will in
crease with time asc(t);At. This result follows from the
fact that the currentJA(t) of A particles toward the reactio
zone is proportional to 1/At and, consequently, the amou
of C’s, produced up to time t, is given by MC

;* tJA(t)dt;At.
A somewhat slower increase ofc(t) takes place atr 50.

Since the width of the reaction zone diverges asw;t1/6, one
findsc(t);MC /w;t1/3. We can see that, for bothr ,0 and
r 50, the density ofC’s near the membrane exceeds a
thresholdc0 at sufficiently large times. Thus supersaturati
and, associated with it, the precipitation ofC may occur in
these regimes.

Finally, for r .0, the reaction zone leaves the membra
and only a finite density ofC’s left behind. The actual value
of this density depends sensitively on the initial conditio
and one cannot make statements about possible precipit
.

.
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s

-

ct
n-

i-

n

,

e

s
ion

without a knowledge of the actual parameters.
The above considerations, of course, do not constitute

attempt toward an explanation of a real biological pheno
ena such as the precipitation of the siliceous stuctures
single-cell radiolaria. This is so even if one imagines that
the early stages of the evolution, the regular skeletons
either produced as an instability in a physicochemic
reaction-diffusion process, or arise by surface-tensi
assisted precipitation where the membranes are presen
play a passive role~their intersections define the precipita
tion regions! @31#. At the present stage of evolution, the ske
etons are covered with a membranous cytoplasmic s
which appears to play an important role~e.g., transport along
the membrane! in the skeletal depositions@28#. Thus any
attempt at aphysicochemicalexplanation should include th
presence of such anactivemembrane near the precipitatio
zone.

In this paper, we derived results for the properties of
action zones near a semipermeable membrane which isac-
tive only in the sense that it is blocking the transport of o
of the reagents. We hope, however, that our results will h
in discussing more complicated reactions nearactive mem-
branes in the same way as the understanding of the prope
of the reaction zone@1# in the A1B→C reaction helped in
elucidating the features of the pattern formation in the mu
more complicated Liesegang phenomena@22#.
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